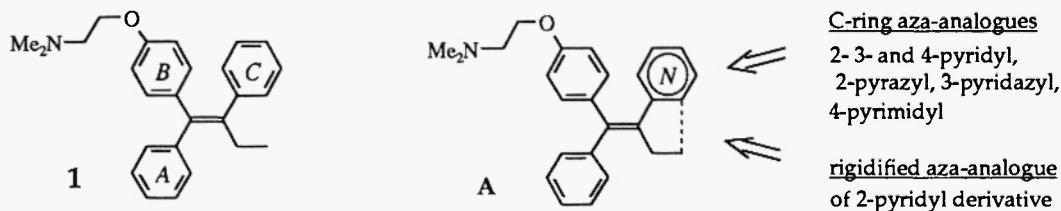
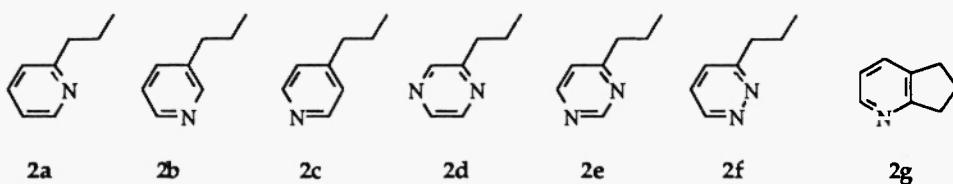


SYNTHESIS OF C-RING AZA-ANALOGUES OF TAMOXIFEN

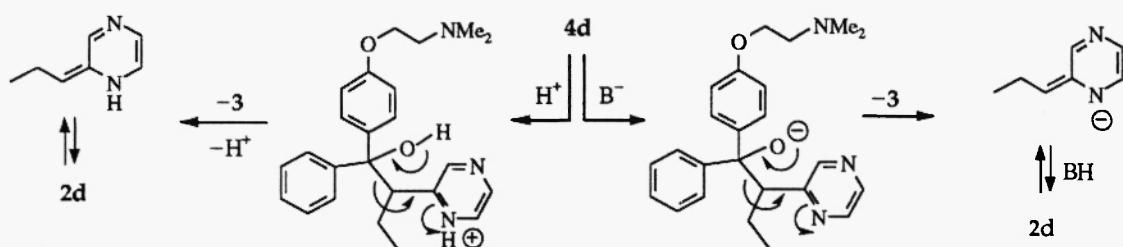

Chantal Olier-Reuchet, David J. Aitken* and Henri-Philippe Husson*


Laboratoire de Chimie Thérapeutique associé au CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Université René Descartes, 4 Avenue de l'Observatoire, 75270 Paris cedex 06, France.
Fax: +33-1 43-29-14-03 E-mail: aitken@pharmacie.univ-paris5.fr

Abstract: Short syntheses of seven C-ring nitrogen heterocycle analogues of Tamoxifen are presented. The key reactions involve condensation of a metallated propylazine with a functionalized benzophenone, followed by dehydration of the resulting carbinol, avoiding a retrocondensation process.

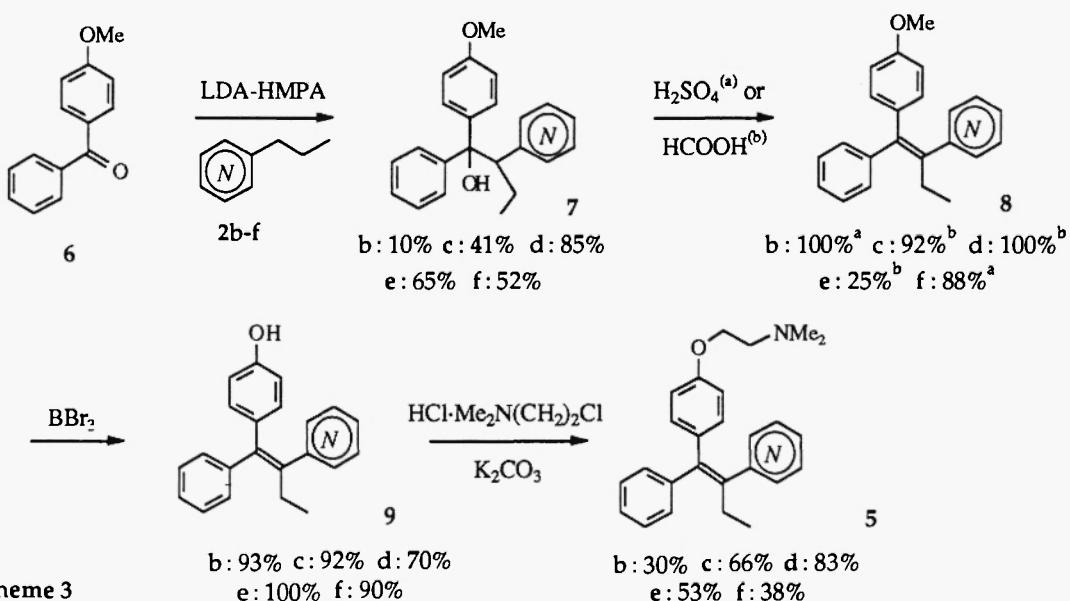
The anti-estrogen Tamoxifen **1** is the most important drug for the treatment of hormone-dependent breast cancer.¹ In the search for second generation analogues with higher and more selective activity, a wide variety of modifications to the parent triarylethylene structure have been investigated. Although the *B*-ring's basic side chain is necessary for anti-estrogen activity, and only tolerates minor alteration, some promising new derivatives have emerged from modifications at other sites in the structure. The knowledge that Tamoxifen is metabolized to the active *A*-ring 4-hydroxy and 3,4-dihydroxy derivatives has inspired the investigation of a large number of *A*-ring substituents, leading to development and clinical trials of a 3-hydroxy compound Droloxifen² and a 4-iodo derivative Idoxifen.³ Modifications of the ethyl group has revealed some useful derivatives, including the drug Toremifene⁴ which has a 2-chloroethyl chain. Relatively little work has been concentrated on the modification of the *C*-ring, although recently it was shown that a *C*-ring 4-amino substituent improves the estrogen receptor binding affinity of Idoxifen.⁵ This suggests an interest in the preparation of Tamoxifen analogues of general structure **A** in which the *C*-ring is replaced by an isosteric heterocyclic aromatic ring having the possibility to form a hydrogen bond. This kind of heterocyclic replacement has so far only been studied for Tamoxifen's *A*-ring.⁶

In this communication, we present the synthesis of seven such analogues, following a synthetic strategy requiring a disconnection across the olefinic bond, which implies a benzophenone-type electrophile to supply the *A* and *B* rings. This uncommon approach for the synthesis of Tamoxifen derivatives appeared suited to our objective, since it invoked the stabilized α -carbanions of propyl-substituted nitrogen heterocycles as nucleophiles. While condensation reactions involving methyl azines are well known, much less work has been done on higher alkyl homologues.⁷ Likewise, only a limited number of functionalized benzoyl electrophiles have been investigated in reactions with carbanions derived from methyl (or other alkyl) azines.⁸ Herein we report that the functionalization tolerated on the benzophenone electrophile depends on the identity of the deprotonated propyl heterocycle with which it is intended to react.


Heterocycles **2a-g** were selected for study. Compounds **2a**, **2d** and **2g** are commercially available, and the other four products were obtained in moderate yields (25-45%) by ethylation of the α -carbanion of the corresponding commercial methyl derivatives, using minor adaptations of literature procedures.^{8d,9}

In the first series of experiments, each propyl heterocycle **2** was deprotonated with LDA-HMPA (2 equiv.) in THF at -70°C to give a deep red anion, which was treated with the fully side-chain functionalized benzophenone **3**¹⁰ (Scheme 1). Only **2a**, **2d** and **2g** (the commercial reagents!) gave carbinol condensation products **4** (yields 30-87%); the other heterocyclic anions failed to react with **3**, which was recovered quantitatively from the reaction mixture. Only one regioisomer of **4g** was obtained, which indicated that deprotonation had been achieved regioselectively at the pyridine C-2 methylene substituent, favoured by the resulting charge delocalization onto nitrogen.

Scheme 1


Adducts **4a** and **4g** were dehydrated quantitatively in acid medium (32% H_2SO_4 , 3 h, reflux) to complete the very short synthesis of the C-ring aza-analogues **5a** and **5g** in 50% and 30% overall yield, respectively. As with most syntheses of Tamoxifen or its analogues, these products were obtained as 50:50 mixtures of *Z* and *E* isomers. In contrast, acid treatment of the pyrazyl adduct **4d**, which had been isolated in good yield (87%) from the condensation reaction, induced a retrocondensation reaction whereby the benzophenone starting material **3** was regenerated. The same phenomenon was observed for **4d** with other acid (HCOOH, AcOH), basic (NaOH-EtOH) or miscellaneous dehydrating media (POCl₃-HMPA,¹¹ DMSO-heat,¹² P₂I₄,¹³ DEAD-Ph₃P,¹⁴ Burgss' salt¹⁵). The likely mechanism for the retrocondensation is shown in Scheme 2; it operates in the case of a 2-pyrazyl but not a 2-pyridyl derivative probably because of the lower energy barrier to loss of aromaticity in the former case. Thermal^{8c,16a} and base-catalyzed^{16b} retrocondensations have been reported previously for 2-(2-hydroxy-2-arylethyl)pyrazines.

Scheme 2

The use of **3** was successful for only two of the seven heterocycles studied, and it was therefore necessary to use a benzophenone electrophile with a less-developed side chain. In this second approach, the carbanions of **2b-f** were treated with the commercial 4-methoxy-benzophenone **6**, this time to give the required carbinols **7b-f** in variable yields (Scheme 3). Predictably, the poorest yield (10%) was obtained for the heterocycle with the least-easily generated carbanion, i.e. the 3-pyridyl derivative **7b**, and to achieve even this low yield, a combination of LDA/BuLi was required as the base. Dehydration of the carbinols (H_2SO_4 or HCOOH , 3h, reflux) gave the olefins **8b-f** in good yields (88-100%), except for the 4-pyrimidine derivative, which underwent a competing retrocondensation process analogous to that observed for **4d**, resulting in a lower yield of olefin **8c** (25%). Nonetheless, all five required olefins were obtained by this approach, and were isolated as 50:50 mixtures of *Z* and *E* isomers. It was noteworthy that the 2-pyrazyl derivative **7d** gave no trace of a retrocondensation reaction, in contrast with **4d**. Overall, these results were gratifying, given the literature precedent for destructive retrocondensation reactions of 2-(2-hydroxy-2-arylethyl)diazines, particularly those in which the alcohol is tertiary.^{8c,16,17}

The basic side chain was introduced by a two-step procedure (Scheme 3). Demethylation using boron tribromide (CH_2Cl_2 , 15h, 20°C) proceeded in good yield (70-100%) to give phenols **9b-f** which were alkylated (30-83% yield) with (chloroethyl)dimethylamine hydrochloride in the presence of potassium carbonate (DMF, 5h, 110°C) to furnishing the target molecules **5b-f**. The 50:50 isomeric ratio remained constant during these procedures, except in the case of the 2-pyrazyl derivative; BBr_3 treatment of the 50:50 *Z*:*E*-**8d** sample gave phenol **9d** in a 75:25 *Z*:*E* ratio, and these proportions remained unchanged in the alkylation step.¹⁸ Triarylethylenes, including Tamoxifen itself, are known to be susceptible to acid-catalyzed isomerization, and the acidity of the BBr_3 reagent should be easily sufficient to permit equilibration; however it is not clear why a 75:25 ratio should be preferred in the case of **9d** but not for any other.

Scheme 3

In conclusion, propyl substituted nitrogen heterocycles are efficiently deprotonated at the α -position but react with the highly functionalized benzophenone **3** in only a few cases; the less functionalized benzophenone **6** is a more convenient electrophile, and its side-chain can be developed after the condensation reaction and usually efficient dehydration. A series of C-ring aza-analogues of Tamoxifen has thus been prepared, by either the direct or indirect route.¹⁹ The biological activity of these compounds is under evaluation and will be reported elsewhere.

Acknowledgement. We are grateful to Dr. R. Bucourt for continued interest and helpful discussions, and to Laboratoires Theramex, Monaco, for financial support (a grant to C. O.-R.).

References and Notes.

- (a) H. Wiseman, *Tamoxifen: Molecular Basis of Use in Cancer Treatment and Prevention*, Wiley, Chichester, 1994 (b) M.W. DeGregorio and V.J. Wiebe, *Tamoxifen and Breast Cancer*, Yale University Press, 1994 (c) B.J.A. Burr and V.C. Jordan, *Pharmac. Ther.*, **25**, 127 (1984)
- (a) R. Löser, K. Seibel and H.J. Huber, *Anti-cancer Res.*, **8**, 1271 (1988) (b) W. Rauschning and K.I. Pritchard, *Breast Cancer Res. Treat.*, **31**, 83 (1994) (c) *Drugs Fut.*, **9**, 186 (1984)
- (a) R. McCaigue, G. LeClercq, N. Legros, J. Goodman, G.M. Blackburn, M. Jarman and A.B. Foster, *J. Med. Chem.*, **32**, 2527 (1989) (b) B.P. Haynes, M. Quigley, D.A. Doody, A. Clarkson, L.J. Griggs, M. Dowset and M. Jarman, *Anal. Oncol.*, **5** (Suppl. 5), 172 (1994) (c) *Drugs Fut.*, **20**, 666 (1995)
- (a) L. Kangas, *J. Steroid Biochem.*, **36**, 191 (1990) (b) L. Kangas, *Prog. Cancer Res. Ther.*, **35**, 374 (1988) (c) *Drugs Fut.*, **11**, 398 (1986)
- I.R. Hardcastle, M.G. Rowlands, J. Houghton and M. Jarman, *Bioorg. Med. Chem. Lett.*, **5**, 805 (1995)
- (a) W. Schwartz, R. Hartmann and H. Shönenberger, *Arch. Pharm. (Weinheim)*, **324**, 223 (1991) (b) J.R. Dice, L. Scheinman and K.W. Berrodin, *J. Med. Chem.*, **9**, 176 (1965)
- Leading references can be found in the appropriate chapters in *Comprehensive Heterocyclic Chemistry II*, A.R. Katritzky, C.W. Rees and E.F.V. Scriven, eds., Pergamon, Oxford, 1996
- For examples, see: (a) J.L. Dillon, R.H. Spector, G.D. Madding and M.E. Wire, *J. Heterocyclic Chem.*, **30**, 707 (1993) (b) R.L. Bassfield and Y. Houminer, *J. Org. Chem.*, **48**, 2130 (1983) (c) Y. Houminer, *J. Org. Chem.*, **45**, 999 (1980) (d) E.M. Kaiser and J.D. Petty, *Synthesis*, 705, (1975) (e) J.D. Behun and R. Levine, *J. Am. Chem. Soc.*, **81**, 5157 (1959) (e) A.D. Miller and R. Levine, *J. Org. Chem.*, **24**, 1364 (1959)
- (a) C. Osuch and R. Levine, *J. Am. Chem. Soc.*, **78**, 1723 (1956) (b) A. Ohsawa, T. Uezu and H. Igeta, *Chem. Pharm. Bull.*, **26**, 2428 (1978) (c) M. Butters, *J. Heterocyclic Chem.*, **29**, 1369 (1992)
- C. Olier-Reuchet, D.J. Aitken, R. Bucourt and H.-P. Husson, *Tetrahedron Lett.*, **36**, 8221 (1995)
- This dehydrating reagent combination is reported to minimize retroaldol reactions: B.M. Trost and L.N. Jungheim, *J. Am. Chem. Soc.*, **102**, 7910 (1980). In our case retrocondensation was indeed suppressed, but dehydration was not achieved.
- (a) V.J. Traynelis, W.H. Hergenrother, J.R. Livingston and J.A. Valicenti, *J. Org. Chem.*, **27**, 2377 (1962) (b) V.J. Traynelis, W.H. Hergenrother, H. Hanson and J.A. Valicenti, *J. Org. Chem.*, **29**, 123 (1964)
- H. Suzuki and T. Fuchita, *Nippon Kagaku Kaishi*, **11**, 1679 (1977) [*Chem. Abstr.*, **88**, 62081c (1978)]
- O. Mitsunobu, *Synthesis*, **1** (1981). This reagent combination gave around 5-10% of the desired olefin **5d** and >90% retrocondensation products.
- E.M. Burgess, H.R. Penton Jr. and E.A. Taylor, *J. Am. Chem. Soc.*, **92**, 5224 (1970)
- (a) Y. Houminer, R.A. Fenner, H.V. Secor and J.I. Seeman, *J. Org. Chem.*, **52**, 3971 (1987) (b) J.D. Behun and R. Levine, *J. Am. Chem. Soc.*, **81**, 5666 (1959)
- A. Ohsawa, T. Uezu and H. Igeta, *Chem. Pharm. Bull.*, **27**, 916 (1979)
- Attribution of Z and E structures of new compounds was made by analogy with literature ¹H NMR spectral data for Tamoxifen-type triarybutenes; in particular, the ethyl chain signals are at lower field for the E isomer (e.g.: E-Tamoxifen, 0.92 and 2.51 ppm; Z-Tamoxifen, 0.90 and 2.43 ppm). See: (a) P. Sohar, G. Abraham, G. Schneider, T. Horvath and E. Fuggerth, *Acta Chim. Acad. Sci. Hung.*, **100**, 69 (1979) (b) D.J. Collins, J.J. Hobbs and C.W. Emmens, *J. Med. Chem.*, **10**, 952 (1971)
- All new products showed satisfactory spectral and/or analytical data.

Received on October 8, 1997